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Optimizing for HPC

v Some trends in HPC architectures
v How you can optimize your code for these architectures (specifically
the IBM BG/Q (Mira) and the Intel Xeon Phi (Theta)
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High-Level Optimization
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High-Level Optimization
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High-Level Optimization
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Compiling

When compiling your programs, please use our MPI wrappers (these are the softenv keys)...

(generally best performance)

AN

+mpiwrapper-xl.legacy

AN

+mpiwrapper-x|

<

+mpiwrapper-bgclang.legacy

<

+mpiwrapper-bgclang

AN

+mpiwrapper-gcc.legacy

AN

+mpiwrapper-gcc

(generally worst performance)
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Compiling

Basic optimization flags...

v -0O3 — Generally aggressive optimizations (try this first: it is typically the best tested of all compiler
optimization levels)

v -g —Always include debugging symbols (really, always! - when your run crashes at scale after
running for hours, you want the core file to be useful)

» -gsmp=omp (xI) -fopenmp (bgclang and gcc) — Enable OpenMP (the pragmas will be ignored
without this)

v -gnostrict (xl) -ffast-math (bgclang and gcc) — Enable “fast” math optimizations (most people don't
need strict IEEE floating-point semantics). x| enables this by default at -O3 and above and you
need to pass -qstrict to turn it off.




<

AN

AN

<

What programs do...
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Read data from memory
Compute using that data
Write results back to memory

Communicate with other nodes and the outside world
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How fast can you go...

The speed at which you can compute is bounded by:

(the clock rate of the cores) x (the amount of parallelism you can exploit)

®
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There is only one sock
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Image source: https://computing.linl.gov/tutorials/linux_clusters/
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There is only one socket

R S

Image source: https://computing.linl.gov/tutorials/linux_clusters/ A BG/Q NOde haS:
v 1 PowerPC A2Q CPU
v 16 GB DDR3 DRAM
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There are 16 cores per node
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Image source: https://computing.linl.gov/tutorials/linux_clusters/
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There are 16 cores per node
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ction Decode Queue

192-entry Reorder Buffer

Integer
ALU/Shift

g Branch
H -

Store
Address

Branch, Fixed Point, Load/Store (XU)

L@—LHa1Hex2Hests:iHex5l—r{ex5H—:i i1 |

Floating Paint (FU)

Argonne &

NATIONAL LABORATORY



There are two pipelines per core PowerPC A2 Core:

ecode Queue

192-entry Reorder Buffer

servation Station

Port 5 Port & Port 7

Ut ote

Intstruction Unit (1LU)

Coom platics '

ex3 exd x5 ] : rf1 :
a3

Tal2

Branch, Fixed Point, Load/Store (XU)
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Floating Paint (FU)
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256bFP | 256b FP
Add

Branch
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There are four hardware threads per core

1 g 1 o 0 v [ x5 o 1
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You must have at least two threads (or processes)
per core to efficiently use the BG/Q!
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Vectorization: The Quad-Processing eXtension (QPX)
v On the BG/Q, only QPX vector instructions are supported!

v Only <4 x double>, <4 x float> and <4 x bool> operations are provided.

v The only advantage of single precision over double precision is decreased memory bandwidth/footprint.

256 {

Load
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Fused Multiply Add Instructions (FMA)

There are some FP (vector) instructions that combine both a multiply and an add/subtract into one instruction!

Many variants like these:

And a few like these with built-in permutations:
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Putting it all together...

L
Peak FLOPS: (1.66 GHz) x (16 cores) x (4 vector lanes) x (2 operations per FMA) = 212.48 GFLOPS/node.
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Types of parallelism

v Parallelism across nodes (using MPI, etc.)

v Parallelism across sockets within a node [Not applicable to the BG/Q, KNL, etc.]
v Parallelism across cores within each socket

v Parallelism across pipelines within each core (i.e. instruction-level parallelism) g
v Parallelism across vector lanes within each pipeline (i.e. SIMD) )

v Using instructions that perform multiple operations simultaneously (e.g. FMA) ‘
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Computer Architecture

Traditional computers are built to:
 Move data
 Make decisions

 Compute polynomials (of relatively-low order)

f(x) =ao+ a1x + aox’ + asx’ + asr

—

v

4
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CO m p ute I AFC h |teCtu re IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 23, NO. 5, OCTOBER 1990

$ cat /tmp/fl.c
double foo(double a0, ..., double x) {
return a0 + x*(al + x*(a2 + x*(a3 + a4*x)))

}
t0 = fma(a4, x, a3)
t1 = fma(to, x, a2)
t2 = fma(tl, x, al)
t3 = fma(t2, x, a0)
return t3
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Computer Architecture

But this is not good...

t0 = fma(a4, x, a3)
Waiting...
wgmg <ww= How do we put useful work here?
Waiting...

Waiting...

t1 = fma(to, x, a2)

A lot of computer architecture revolves around this question:

t2 = fma(tl, x, al)
t3 = fma(t2, x, a0)

return t3
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Hardware Threads

One way is to use hardware threads...

t0 = fma(a4, x, a3) [thread O]
t0 = fma(a4, x, a3) [thread 1]
t0 = fma(a4, x, a3) [thread 2]
t0 = fma(a4, x, a3) [thread 3]
t0 = fma(a4, x, a3) [thread 4]
t0 = fma(a4, x, a3) [thread 5]
t1 = fma(to, x, a2)

t2 = fma(tl, x, al)
e o o How many threads do we need?
t3=maltz, %, a0) " How much latency do we need to hide?

return t3
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Time Scales in Computing

Latency Comparison Numbers

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 1K bytes over 1 Gbps network
Read 4K randomly from SSD*

Read 1 MB sequentially from memory
Round trip within same datacenter
Read 1 MB sequentially from SSD*
Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

0.5 ns

5 ns

7 ns

25 ns

100 ns

3,000 ns
10,000 ns
150,000 ns
250,000 ns
500,000 ns
1,000,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns

3

10

150

250

500
1,000
10,000
20,000
150,000

us
us
us
us
us
us
us
us
us

10
20
150

ms
ms
ms
ms

~1GB/sec SSD

~1GB/sec SSD

80x memory

Latency Numbers Every Programmer Should Know: https://gist.github.com/jboner/2841832
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The IBM BG/Q network is fast...
v Each A/B/C/DI/E link bandwidth: 4 GB/s
v Bisection bandwidth (32 racks): 13.1 TB/s

v HW latency

v Best: 80 ns (nearest neighbor)

v Worst: 3 us (96-rack 20 PF system, 31 ho
v MPI latency (zero-length, nearest-neighbor): 2.2 us
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Loop Unrolling

CPUs have a fixed register file per thread, and the compiler can use that to hide latency...

for (inti=0;i<n;i+=2){

for (int1=0;1<n; ++i) {
X = Input]i]
t0 = fma(a4, x, al3)
t1 = fma(to, x, a2)
t2 = fma(tl, x, al)
t3 = fma(t2, x, ao)
Output[i] = t3

}
TR

X = Inputfi]
y = Input[i+1]
t0 = fma(a4, x, a3)
u0 = fma(a4, y, a3)
t1 = fma(to, x, a2)
ul = fma(uo, y, a2)
t2 = fma(tl, x, al)
u2 = fma(ul, y, al)
t3 = fma(t2, x, a0)
u3 = fma(uz, y, a0)
Output[i] = t3
Output[i+1] = u3

If you need to tune this yourself, most compilers have a '#pragma unroll' feature.
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You can't unroll enough to completely hide anything but “on core” latencies (e.g. L1 cache hits and from
FP pipeline) — you just don't have enough registers!

* X86_64 has 16 general-purpose registers (GPRs) — for
scalar integer data, pointers, etc. — and 16 floating-
point/vector registers

* With AVX-512 (e.g. with Knights Landing) there are 32
floating-point/vector registers

 AVX-512 also adds 8 operation mask registers

 PowerPC has 32 GPRs, 32 scalar floating-point registers
and 32 vector registers (modern cores with VSX
effectively combine these into 64 floating-point/vector
registers)

AAAAAAAAAAAAAAAA



OOO Execution and Loops
 CPUs, including Intel's Knights Landing, use out-of-order
(OO0OQ0) execution to hide latency
* S0 to say that there are only 16 GPRs, for example, isn't the
whole story: there are just 16 GPRs that the compiler can

name for (inti=0;i<n; ++i) {
X = Input]i]
t0 = fma(a4, x, al3)
t1 = fma(to, x, a2)
t2 = fma(tl, x, al)
t3 = fma(t2, x, a0)

Output[i] = t3 g

} Argonne &




OO0 Execution

* Importing to exploiting instruction-level parallelism (ILP)
— each core's multiple pipelines

« Combined with branch prediction, can effectively provide
a kind of dynamic loop unrolling

 Limited by the number of “rename buffer entries” (72 on
Knights Landing)

 Limited by the number of “reorder buffer entries” (72 on
Knights Landing)

« Mispredicted branches can lead to wasted work!
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KNL Pipeline

n=-
=i

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7453080
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Vectorization: The Quad-Processing eXtension

[N

(This is for the IBM BG/Q, but the picture is fairly generic)
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SIMD: What does it mean?

Scalar SIMD

X1

1

X171

I I *I
o

https://software.intel.com/en-us/articles/ticker-tape-part-2
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Vectors Have Many Types

e A 512-bit vector can hold 8 double-precision numbers, 16
single-precision numbers, etc.

 Different assembly instructions have different assumptions
about the data types

e Except on the IBM BG/Q (where only FP is supported), both
Integer and FP types are supported

SD/UD/MDIDP O SD/UDVMDIDP 1

SWUWIMWISP O ‘ SWIUWMWISP 1 SWIUWIMWISP 2 | SWILWIMWISP 3
n S [ R 127

(This diagram is from the IBM POWER ISA manual, showing the 128-bit VSX registers)

Vector Length
128 256 512
Byte 16 32 64
ward 8 16
element Dw ord/SP 4 8 16
size QuordioP | 2 - 8 Argonne &




AOS vs. SOA

Structure of Arrays
struct Particles {

float *y;
float *w;
lzfz]z]z2]-] ;
W W w W
Array of Structures struct Particle {
float x;
float z;
httos: . : : float w;
ttps://software.intel.com/en-us/articles/ticker-tape-part-2 .

struct Particle *Particles;
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MKL, cuBLAS, ESSL, etc.

Vendors provide optimized math libraries for each system (BLAS for linear
algebra, FFTs, and more).

v MKL on Intel systems, ESSL on IBM systems, cuBLAS (and others) for
NVIDIA GPUs

v For FFTs, there is often an optional FFTW-compatible interface.
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ESSL

IBM provides ESSL.: A library of optimized math functions (BLAS for linear algebra, FFTs, and more). For
FFTs, there is an optional FFTW-compatible interface.

v ESSL is installed in /soft/libraries/essl/current
» You can choose either -lesslbg or -lesslsmpbg (the 'smp' version uses OpenMP internally to take

advantage of multiple threads)
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Memory partitioning

Using threads vs. multiple MPI ranks per node: it's about...

v Memory
v Sending data between ranks on the same node often involves “unnecessary” copying (unless
using MPI1-3 shared memory windows)
v Similarly, your application may need to manage “unnecessary” ghost regions
v MPI (and underlying components) have data structures that grow linearly (at best) with the total
number of ranks
v And Memory
v When threads can work together they can share resources instead of competing (cache,
memory bandwidth, etc.)
v Each process only gets a modest amount of memory per core
v And parallelism
v You'll likely see the best overall results from the scheme that exposes the most parallelism

AAAAAAAAAAAAAAAAAA




Avoid central coordinators

A scheme like this is highly unlikely to scale!
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Load Balancing

« Keep "work units" being distributed between ranks as large as possible, but try hard to

keep everything load balanced.

» Think about load balancing early in your application design: it is the largest impediment to

scaling on large systems.

This is not good; rank 0 has much more work.
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schedule(dynamic) can be your friend...

#pragma omp parallel for schedule(dynamic)
for i=0;i<n;i++){

unknown_amount_of work(i);

Tiwead0 Thread1 Thead? Thresd3 Tiwead0 Thead1 Thiesd? Thead3
l
{a) Unbalanced assignment of tasks o threads [b) Balanosd assignment of tasks to threads

https://software.intel.com/en-us/articles/load-balance-and-parallel-performance
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#pragma omp simd
Starting with OpenMP 4.0, OpenMP also supports explicit vectorization...

char foo(char *A, int n) {

inti;

char x = 0;
#pragma omp simd reduction(+:x)

for (i=0; i<n; i++){ H N

X =X + A[i];

}

return Xx; char foo(char *A, int n) {
} inti;

char x = 0;
#pragma omp parallel for simd reduction(+:x)
for (i=0; i<n; i++){
X =X+ Ali];
}

return Xx;

}

https://software.intel.com/en-us/articles/enabling-simd-in-program-using-openmp40
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Some final advice...

Don't guess! Profile! (We'll have several talks about how to do that.) Your performance bottlenecks on the
BG/Q might be very different from those on other systems.

And don't be afraid to ask questions... ‘ ' Any questions?
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